Urea signaling in cultured murine inner medullary collecting duct (mIMCD3) cells involves protein kinase C, inositol 1,4,5-trisphosphate (IP3), and a putative receptor tyrosine kinase.
نویسندگان
چکیده
Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate-early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1. In the present study, the proximal 1.2 kb of the murine Egr-1 5' -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected into renal medullary mIMCD3 cells,and this effect was comparable with that of the extremely potent immediate-early gene inducer, O-tetradecanoylphorbol 13-acetate (TPA). Urea inducibility of Egr-1 expression was protein kinase C (PKC)-dependent because staurosporine and calphostin C abrogated the urea effect, and down-regulation of PHC through chronic TPa treatment inhibited both urea-inducible Egr-1 protein expression and gene transcription. In addition, hyperosmotic urea increased inositol 1,4,5-trisphosphate (IP3) release from mIMCD3 cells and induced tyrosine phosphorylation of the receptor tyrosine kinase-specific phospholipase C (PLC) isoform, PLC-gamma. Importantly, urea-inducible Egr-1 expression was strongly genistein-sensitive, to a much greater extent than the comparable TPA-inducible Egr-1 expression. These data suggest that urea-inducible Egr-1 expression is a consequence of sequential PLC-gamma activation, IP3 release, and PKC activation. Urea-inducible PLC-gamma activation, in conjunction with the genistein-sensitivity of urea-inducible Egr-1 expression suggest the possibility of a cell surface or cytoplasmic urea-sensing receptor tyrosine kinase.
منابع مشابه
Urea Signaling in Cultured Murine Inner Medullary Collecting Duct (mIMCD3) Cells Involves Protein Kinase C, Inositol 1,4,5-Trisphosphate (IP
Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate–early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1 . In the present study, the proximal 1.2 kb of the murine Egr-1 5 9 -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected int...
متن کاملEpidermal Growth Factor-stimulated Phosphoinositide Hydrolysis
Epidermal growth factor (EGF) exhibits specific saturable binding to cultured rat inner medullary collecting tubule cells and stimulates inositol trisphosphate (IP3) production by these cells in a dose-dependent fashion. EGF-stimulated IP3 production is enhanced by GTP-ys or AJF4 and is inhibited by GDPBs or pertussis toxin. Alterations in extracellular Ca2" have no effect on either basal or EG...
متن کاملPhosphoinositide signaling in rat inner medullary collecting duct.
Previous studies in microdissected rat inner medullary collecting duct (IMCD) segments have demonstrated that carbachol, arginine vasopressin (AVP), and the V2 vasopressin receptor agonist 1-desamino-8-d-arginine vasopressin (DDAVP) induce a similar increase in intracellular Ca2+. The present study tested whether these agents activate the phosphoinositide hydrolysis pathway. In intracellular in...
متن کاملUrea signalling to immediate-early gene transcription in renal medullary cells requires transactivation of the epidermal growth factor receptor.
Signalling by physiological levels of urea (e.g. 200 mM) in cells of the mammalian renal medulla is reminiscent of activation of a receptor tyrosine kinase. The epidermal growth factor (EGF) receptor may be transactivated by a variety of G-protein-coupled receptors, primarily through metalloproteinase-dependent cleavage of a membrane-anchored EGF precursor. In the murine inner medullary collect...
متن کاملCalpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain.
Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] is one of the key intracellular second messengers in cells and mobilizes Ca2+ stores in the ER (endoplasmic reticulum). Ins(1,4,5)P3 has a short half-life within the cell, and is rapidly metabolized through one of two pathways, one of which involves further phosphorylation of the inositol ring: Ins(1,4,5)P3 3-kinase (IP3-3K) phosphorylates Ins(1,4,5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 97 8 شماره
صفحات -
تاریخ انتشار 1996